38,062 research outputs found

    Guanxi and the organization of Chinese new year festivals in England

    Get PDF
    This article explores how Chinese diaspora communities use guanxi, a unique Chinese interpretation of personal relationships, in the organization of Chinese New Year (CNY) festivals in England. A case-study approach that incorporated mixed qualitative methods was used to investigate the interactions and interrelationships between the ethnic Chinese communities involved in the organization of CNY festivals in five English cities. The article argues that Chinese diaspora communities use their guanxi to establish collaboration at CNY festivals. However, the process of organizing CNY festivals has also exposed divisions among Chinese communities. The article proposes that guanxi has important implications for the relationships among Chinese diaspora communities in the context of CNY festivals. Although it facilitates collaboration and promotes solidarity among Chinese communities, it may also intensify competition for power. Diaspora festivals in general are a neglected area of research and this article is the first to study the organization of Chinese New Year festivals in detail

    New Structured Matrix Methods for Real and Complex Polynomial Root-finding

    Full text link
    We combine the known methods for univariate polynomial root-finding and for computations in the Frobenius matrix algebra with our novel techniques to advance numerical solution of a univariate polynomial equation, and in particular numerical approximation of the real roots of a polynomial. Our analysis and experiments show efficiency of the resulting algorithms.Comment: 18 page

    Crash Analysis and Energy Absorption Characteristics of S-shaped Longitudinal Members

    Get PDF
    This paper presents finite element simulations of the crash behavior and the energy absorption characteristics of thin S-shaped longitudinal members with variable cross-sections made of different materials to investigate the design of optimized energy-absorbing members. Numerical studies are carried out by simulation via the explicit finite element code LS-DYNA [1] to determine the desired variables for the design of energy-absorbing members. The specific energy absorption (SEA), the weight of the members and the peak force responses during the frontal impact are the main measurements of the S-shaped members' performance. Several types of inner stiffening members are also investigated to determine the influence of the additional stiffness on the crash behavior

    The Quantum Interference Computer: an experimental proposal

    Full text link
    An experiment is proposed to test the interference aspect of the Quantum Interference Computer approachComment: 6 pages, 1 figur

    Practical Certificateless Aggregate Signatures From Bilinear Maps

    Get PDF
    Aggregate signature is a digital signature with a striking property that anyone can aggregate n individual signatures on n different messages which are signed by n distinct signers, into a single compact signature to reduce computational and storage costs. In this work, two practical certificateless aggregate signature schemes are proposed from bilinear maps. The first scheme CAS-1 reduces the costs of communication and signer-side computation but trades off the storage, while CAS-2 minimizes the storage but sacrifices the communication costs. One can choose either of the schemes by consideration of the application requirement. Compare with ID-based schemes, our schemes do not entail public key certificates as well and achieve the trust level 3, which imply the frauds of the authority are detectable. Both of the schemes are proven secure in the random oracle model by assuming the intractability of the computational Diffie-Hellman problem over the groups with bilinear maps, where the forking lemma technique is avoided

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip
    • 

    corecore